\(\int \frac {\sec (c+d x) (A+C \sec ^2(c+d x))}{(a+b \sec (c+d x))^{3/2}} \, dx\) [744]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F(-1)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 33, antiderivative size = 279 \[ \int \frac {\sec (c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=-\frac {2 \left (A b^2+2 a^2 C-b^2 C\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{b^3 \sqrt {a+b} d}+\frac {2 (A b-(2 a+b) C) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{b^2 \sqrt {a+b} d}-\frac {2 \left (A b^2+a^2 C\right ) \tan (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}} \]

[Out]

-2*(A*b^2+2*C*a^2-C*b^2)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(b*(1-se
c(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^3/d/(a+b)^(1/2)+2*(A*b-(2*a+b)*C)*cot(d*x+c)*Elliptic
F((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a
-b))^(1/2)/b^2/d/(a+b)^(1/2)-2*(A*b^2+C*a^2)*tan(d*x+c)/b/(a^2-b^2)/d/(a+b*sec(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.43 (sec) , antiderivative size = 279, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.121, Rules used = {4166, 4090, 3917, 4089} \[ \int \frac {\sec (c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=-\frac {2 \left (2 a^2 C+A b^2-b^2 C\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b^3 d \sqrt {a+b}}-\frac {2 \left (a^2 C+A b^2\right ) \tan (c+d x)}{b d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}+\frac {2 (A b-C (2 a+b)) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{b^2 d \sqrt {a+b}} \]

[In]

Int[(Sec[c + d*x]*(A + C*Sec[c + d*x]^2))/(a + b*Sec[c + d*x])^(3/2),x]

[Out]

(-2*(A*b^2 + 2*a^2*C - b^2*C)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a
- b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b^3*Sqrt[a + b]*d) + (2*(
A*b - (2*a + b)*C)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[
(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b^2*Sqrt[a + b]*d) - (2*(A*b^2 + a^2
*C)*Tan[c + d*x])/(b*(a^2 - b^2)*d*Sqrt[a + b*Sec[c + d*x]])

Rule 3917

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(Rt[a + b, 2]/(b*
f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin
[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4089

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + C
sc[e + f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b*(B/A), 2]], (a
*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rule 4090

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Dist[A - B, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[B, Int[Csc[e + f*x]*((1 +
 Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && NeQ[A
^2 - B^2, 0]

Rule 4166

Int[csc[(e_.) + (f_.)*(x_)]*((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(
m_), x_Symbol] :> Simp[(-(A*b^2 + a^2*C))*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 1)*(a^2 - b^2))
), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[a*b*(A + C)*(m + 1)
 - (A*b^2 + a^2*C + b*(A*b + b*C)*(m + 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, C}, x] && LtQ[m,
-1] && NeQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 \left (A b^2+a^2 C\right ) \tan (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}-\frac {2 \int \frac {\sec (c+d x) \left (-\frac {1}{2} a b (A+C)-\frac {1}{2} \left (A b^2+2 a^2 C-b^2 C\right ) \sec (c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx}{b \left (a^2-b^2\right )} \\ & = -\frac {2 \left (A b^2+a^2 C\right ) \tan (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}+\frac {\left (A b^2+2 a^2 C-b^2 C\right ) \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx}{b \left (a^2-b^2\right )}+\frac {(A b-(2 a+b) C) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{b (a+b)} \\ & = -\frac {2 \left (A b^2+2 a^2 C-b^2 C\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{b^3 \sqrt {a+b} d}+\frac {2 (A b-(2 a+b) C) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{b^2 \sqrt {a+b} d}-\frac {2 \left (A b^2+a^2 C\right ) \tan (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}} \\ \end{align*}

Mathematica [A] (warning: unable to verify)

Time = 20.72 (sec) , antiderivative size = 541, normalized size of antiderivative = 1.94 \[ \int \frac {\sec (c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\frac {(b+a \cos (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \left (-\frac {4 \left (A b^2+2 a^2 C-b^2 C\right ) \sin (c+d x)}{b^2 \left (-a^2+b^2\right )}+\frac {4 \left (A b^2 \sin (c+d x)+a^2 C \sin (c+d x)\right )}{b \left (-a^2+b^2\right ) (b+a \cos (c+d x))}\right )}{d (A+2 C+A \cos (2 c+2 d x)) (a+b \sec (c+d x))^{3/2}}+\frac {4 \sqrt {2} \sqrt {\frac {\cos (c+d x)}{(1+\cos (c+d x))^2}} (b+a \cos (c+d x)) \sqrt {\cos (c+d x) \sec ^2\left (\frac {1}{2} (c+d x)\right )} \left (\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)\right )^{3/2} \left (A+C \sec ^2(c+d x)\right ) \left ((a+b) \left (\left (A b^2+2 a^2 C-b^2 C\right ) E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right )+b (-A b+(-2 a+b) C) \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right )\right ) \left (\cos (c+d x) \sec ^2\left (\frac {1}{2} (c+d x)\right )\right )^{3/2} \sqrt {\frac {(b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}} \sec (c+d x)+\left (A b^2+2 a^2 C-b^2 C\right ) \cos (c+d x) (b+a \cos (c+d x)) \sec ^4\left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )\right )}{b^2 \left (-a^2+b^2\right ) d \sqrt {\frac {1}{1+\cos (c+d x)}} (A+2 C+A \cos (2 c+2 d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right )^{3/2} \sqrt {\sec (c+d x)} (a+b \sec (c+d x))^{3/2}} \]

[In]

Integrate[(Sec[c + d*x]*(A + C*Sec[c + d*x]^2))/(a + b*Sec[c + d*x])^(3/2),x]

[Out]

((b + a*Cos[c + d*x])^2*(A + C*Sec[c + d*x]^2)*((-4*(A*b^2 + 2*a^2*C - b^2*C)*Sin[c + d*x])/(b^2*(-a^2 + b^2))
 + (4*(A*b^2*Sin[c + d*x] + a^2*C*Sin[c + d*x]))/(b*(-a^2 + b^2)*(b + a*Cos[c + d*x]))))/(d*(A + 2*C + A*Cos[2
*c + 2*d*x])*(a + b*Sec[c + d*x])^(3/2)) + (4*Sqrt[2]*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])^2]*(b + a*Cos[c + d
*x])*Sqrt[Cos[c + d*x]*Sec[(c + d*x)/2]^2]*(Cos[(c + d*x)/2]^2*Sec[c + d*x])^(3/2)*(A + C*Sec[c + d*x]^2)*((a
+ b)*((A*b^2 + 2*a^2*C - b^2*C)*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + b*(-(A*b) + (-2*a + b)*
C)*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)])*(Cos[c + d*x]*Sec[(c + d*x)/2]^2)^(3/2)*Sqrt[((b + a*
Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)]*Sec[c + d*x] + (A*b^2 + 2*a^2*C - b^2*C)*Cos[c + d*x]*(b + a*Cos[c
+ d*x])*Sec[(c + d*x)/2]^4*Tan[(c + d*x)/2]))/(b^2*(-a^2 + b^2)*d*Sqrt[(1 + Cos[c + d*x])^(-1)]*(A + 2*C + A*C
os[2*c + 2*d*x])*(Sec[(c + d*x)/2]^2)^(3/2)*Sqrt[Sec[c + d*x]]*(a + b*Sec[c + d*x])^(3/2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(3017\) vs. \(2(259)=518\).

Time = 12.04 (sec) , antiderivative size = 3018, normalized size of antiderivative = 10.82

method result size
parts \(\text {Expression too large to display}\) \(3018\)
default \(\text {Expression too large to display}\) \(3044\)

[In]

int(sec(d*x+c)*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

2*A/d/(a-b)/(a+b)*((cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE
(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*cos(d*x+c)^2+(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos
(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b*cos(d*x+c)^2-EllipticF(c
ot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x
+c)+1))^(1/2)*a*cos(d*x+c)^2-EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^
(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b*cos(d*x+c)^2+2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a
+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*cos(d*x+c)+2
*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*
x+c),((a-b)/(a+b))^(1/2))*b*cos(d*x+c)-2*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos
(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*cos(d*x+c)-2*EllipticF(cot(d*x+c)-csc(d*x+
c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b*co
s(d*x+c)+(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c
)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a+(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1)
)^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b-(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a
*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a-(cos(d*x+c)/(cos(d*x
+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1
/2))*b+cos(d*x+c)*sin(d*x+c)*a-sin(d*x+c)*cos(d*x+c)*b)*(a+b*sec(d*x+c))^(1/2)/(b+a*cos(d*x+c))/(cos(d*x+c)+1)
-2*C/d/b^2/(a+b)/(a-b)*(sin(d*x+c)*cos(d*x+c)*a*b^2-4*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/
(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)+sin(d*x+c)*b^3
+a^2*b*cos(d*x+c)*sin(d*x+c)-(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)
*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b^3-2*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(c
os(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^3+(1/(a+b)*(b+a*cos(d*x
+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/
2))*b^3+2*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)
*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b^2*cos(d*x+c)+4*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/
(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)+2*EllipticF(co
t(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+
c)+1))^(1/2)*a*b^2*cos(d*x+c)-2*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))
/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)^2+EllipticE(cot(d*x+c)-csc(d*x+c),((
a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b^2*cos
(d*x+c)^2+2*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/
2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)^2+EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(
1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b^2*cos(d*x+c)^2-2*(1/(a+b)
*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-
b)/(a+b))^(1/2))*a^2*b+(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*Ellip
ticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2-2*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(
1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^3*cos(d*x+c)^2+EllipticE(co
t(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+
c)+1))^(1/2)*b^3*cos(d*x+c)^2-EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(
cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b^3*cos(d*x+c)^2+2*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c
)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b+(1/(a
+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(
(a-b)/(a+b))^(1/2))*a*b^2-4*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(co
s(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^3*cos(d*x+c)+2*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(
a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b^3*cos(d*x+c)-
2*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*
x+c)/(cos(d*x+c)+1))^(1/2)*b^3*cos(d*x+c)-2*a^3*cos(d*x+c)*sin(d*x+c)-a^2*b*sin(d*x+c))*(a+b*sec(d*x+c))^(1/2)
/(b+a*cos(d*x+c))/(cos(d*x+c)+1)

Fricas [F]

\[ \int \frac {\sec (c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(sec(d*x+c)*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

integral((C*sec(d*x + c)^3 + A*sec(d*x + c))*sqrt(b*sec(d*x + c) + a)/(b^2*sec(d*x + c)^2 + 2*a*b*sec(d*x + c)
 + a^2), x)

Sympy [F]

\[ \int \frac {\sec (c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\int \frac {\left (A + C \sec ^{2}{\left (c + d x \right )}\right ) \sec {\left (c + d x \right )}}{\left (a + b \sec {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(sec(d*x+c)*(A+C*sec(d*x+c)**2)/(a+b*sec(d*x+c))**(3/2),x)

[Out]

Integral((A + C*sec(c + d*x)**2)*sec(c + d*x)/(a + b*sec(c + d*x))**(3/2), x)

Maxima [F(-1)]

Timed out. \[ \int \frac {\sec (c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\text {Timed out} \]

[In]

integrate(sec(d*x+c)*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Timed out

Giac [F]

\[ \int \frac {\sec (c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(sec(d*x+c)*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)*sec(d*x + c)/(b*sec(d*x + c) + a)^(3/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec (c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\int \frac {A+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{\cos \left (c+d\,x\right )\,{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

[In]

int((A + C/cos(c + d*x)^2)/(cos(c + d*x)*(a + b/cos(c + d*x))^(3/2)),x)

[Out]

int((A + C/cos(c + d*x)^2)/(cos(c + d*x)*(a + b/cos(c + d*x))^(3/2)), x)